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Abstract Let N1 = p1q1 and N2 = p2q2 be two RSA moduli, not necessarily
of the same bit-size. In 2009, May and Ritzenhofen proposed a method to factor
N1 and N2 given the implicit information that p1 and p2 share an amount of least
significant bits. In this paper, we propose a generalization of their attack as follows:
suppose that some unknown multiples a1 p1 and a2 p2 of the prime factors p1 and p2
share an amount of their Most Significant Bits (MSBs) or an amount of their Least
Significant Bits (LSBs). Using a method based on the continued fraction algorithm,
we propose a method that leads to the factorization of N1 and N2. Using simultaneous
diophantine approximations and lattice reduction, we extend the method to factor
k ≥ 3 RSA moduli Ni = piqi , i = 1, . . . , k given the implicit information that
there exist unknown multiples a1 p1, . . . , ak pk sharing an amount of their MSBs or
their LSBs. Also, this paper extends many previous works where similar results were
obtained when the pi ’s share their MSBs or their LSBs.

Mathematics Subject Classification 94A60 · 11Y05

1 Introduction

Research in determining pre-requisites for strong primes for the integer factorization
problem (IFP) of a product of two primes N = pq has been intriguing and have
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captured the attention of researchers since IFP came into prominence via the RSA
algorithm. The simplicity of the problem statement raised interest on whether such
a simple problem statement describing the IFP could only be solved in exponential
time for all cases, i.e. all types of primes. As can be found in the literature, this is
not the case. So-called weak primes were identified by researchers and this caused
an avalanche of research output on this matter. In this paper, we focus on IFP when
N = pq is unbalanced, that is when q is much smaller than p.

In PKC 2009, May and Ritzenhofen [5] presented a method for factoring large
integers with some implicit hints. More precisely, let N1 = p1q1 and N2 = p2q2 be
two RSA moduli of the same bit-size such that q1 and q2 are α-bit primes and p1 and
p2 share at least t least significant bits (LSBs). The method of May and Ritzenhofen
is a lattice based method that allows to find the factorization of N1 and N2 when
t ≥ 2α +3. May and Ritzenhofen’s method heuristically generalizes to a lattice based
method to simultaneously factor k RSA moduli N1 = p1q1, . . . , Nk = pkqk when
the pi ’s share t ≥ k

k−1α many LSBs.
In [8], Sarkar and Maitra reconsidered the method of May and Ritzenhofen for two

RSA moduli. Sarkar and Maitra’s method works when N1 = p1q1 and N2 = p2q2
are such that p1 and p2 share their LSBs or most significant bits (MSBs) as well as a
contiguous portion of bits at the middle.

In PKC 2010, Faugère, Marinier and Renault [1] presented a new and rigorous
lattice-based method that addresses the implicit factoring problem when p1 and p2
share t MSBs. Moreover, when N1 = p1q1 and N2 = p2q2 are two RSA moduli of
the same bit-size and the prime factors qi are α-bit primes, the method of Faugère et al.
provably factors N1 and N2 as soon as p1 and p2 share t ≥ 2α+3MSBs. The method
heuristically generalizes to the case when p1 and p2 share an amount of bits in the
middle. It also heuristically generalizes to k RSAmoduli N1 = p1q1, . . . , Nk = pkqk
when the pi ’s share t ≥ k

k−1α + 6 of MSBs.
In IWSEC 2013, Kurosawa and Ueda [3] presented a lattice-based method to factor

two RSA moduli N1 = p1q1 and N2 = p2q2 of the same bit size when p1 and p2
share t LSBs with t ≥ 2α + 1 where q1 ≈ q2 ≈ 2α . Their method takes advantage
on using Gaussian reduction techniques. It slightly improves the bound t ≥ 2α + 3 of
May and Ritzenhofen. We notice that Kurosawa and Ueda did not study a number of
possible extensions of their method, namely, when p1 and p2 share t MSBs and also
when the multiple of the primes share LSB’s and MSB’s.

All the former attacks apply when the RSA moduli N1 = p1q1, . . . , Nk = pkqk
are of the same bit-size and the pi ’s share an amount of MSBs, LSBs or bits in the
middle. In this paper, we present novel approaches of implicit factoring that generalize
the former attacks and apply when some unknown multiples ai pi of the prime factors
pi share an amount of MSBs or of LSBs.

Our first method concerns two RSA moduli N1 = p1q1, N2 = p2q2 of arbitrarily
sizes in the situation that there exist two integers a1, a2 such that a1 p1 and a2 p2 share
t many MSBs. We show that, using the continued fraction expansion of N2

N1
, one can

factor simultaneously N1 and N2 whenever |a1 p1 − a2 p2| <
p1

2a2q1q2
. In particular,

when N1 and N2 are of the same bit size and q1, q2 are α-bit primes, then one can
factor N1 and N2 whenever ai ≤ 2β for i = 1, 2 and t ≥ 2α + 2β + 1. When β = 0,
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Table 1 Applicability of the
methods for k RSA moduli

Method MSBs LSBs

k = 2 k ≥ 3 k = 2 k ≥ 3

May, Ritzenhofen [5] No No Yes Yes

Sarkar, Maitra [8] Yes No Yes No

Faugère et al. [1] Yes Yes No No

Kurosawa, Ueda [3] No No Yes No

Our methods Yes Yes Yes Yes

that is a1 = a2 = 1, our result becomes t ≥ 2α+1 and improves the bound t ≥ 2α+3
presented in [8] and [1] where the methods are based on lattice reduction techniques.

Our second method is a heuristic generalization of the first method to an arbitrary
number k ≥ 3 of RSA moduli Ni = piqi , i = 1, . . . , k in the situation that there exist
k integers ai such that the ai pi ’s share t many MSBs. When the RSA moduli are of
the same bit size and the factors qi , i = 1, . . . , k, are α-bit primes, the method allows
us to factor the RSA moduli as soon as

t >
k

k − 1
α + k2

k − 1
β + k

2(k − 1)

(
1 + log2(πe)

)
, (1)

whereβ is such that ai ≤ 2β . Once again, withβ = 0, we improve the bound presented
in the attack of [1].

Our third method addresses the implicit factoring problem when two unbalanced
RSA moduli N1 = p1q1 and N2 = p2q2 of arbitrarily sizes are such that there exist
two integers a1 and a2 such that a1 p1 and a2 p2 share t many LSBs. We show that it
is possible to factor both N1 and N2 if a1a2q1q2 < 2t−1. This method is also based
on the continued fraction algorithm, applied to T

2t where T ≡ N2N
−1
1 (mod 2t ). We

notice that, when a1 = a2 = 1 and q1, q2 are α-bit primes, the former condition on t
transforms to t ≥ 2α + 1 which improves the bound on t for LSBs in [5] and [8] and
retrieves the bound of [3].

Our fourth method is a generalization of the third method to k ≥ 3 RSA moduli
Ni = piqi , i = 1, . . . , k. Assume that there exist k integers ai such that the ai pi ’s
share t many LSBs. If the RSA moduli are of the same bit size and the qi ’s are α-bit
primes, our method allows us to address the implicit factoring problem whenever t
satisfies (1) where β is such that ai ≤ 2β .

In fact our findings under the four scenarios, further discus possible malicious key
generation of RSA moduli by observing not only the difference between primes, but
also the differences of the multiple of primes. At the same time it generalizes the
previous works by [1,5,8] and [3]. Contrarily to the previous works, we study all the
possible situations involving k = 2 as well as k ≥ 3 in both cases of MSBs and LSBs.
In Table 1, we compare the applicability of our methods against the previous methods
for the different scenarios.

Also, we notice that not only the new bounds improve the previous ones, but also
that the rank of the new underlying lattices are often lower than the ranks of the lattices
used in the former methods. In Tables 2 and 3, we compare our results against the
former results with k RSA moduli in terms of bounds and dimension of the lattices.
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Table 2 Comparison of the bounds on t for k RSA moduli in the MSB case

Method for MSBs Number of RSA moduli k = 2 Number of RSA moduli k ≥ 3

May, Ritzenhofen [5] Not studied Not studied

Sarkar, Maitra [8] For q1 ≈ q2 ≈ 2α and
|p1 − p2| < 2t , the bound is
heuristically better than
t ≥ 2α + 3 and the dimension
of the lattice is at least 9
(m = t = 1).

Can not be applied

Faugère et al. [1] For q1 ≈ q2 ≈ 2α and
|p1 − p2| < 2t , the rigorous
bound is t ≥ 2α + 3 using
2-dimensional lattices of Z3.

For q1 ≈ · · · ≈ qk ≈ 2α and |pi − p j | < 2t ,

the heuristic bound is t > k
k−1α + 1 +

k
2(k−1)

(
2 + log2(k)

2 + log2(πe)
)
using

k-dimensional lattices of Z
k(k+1)

2 .

Kurosawa, Ueda [3] Not studied. Can not be applied

Our results For q1 ≈ q2 ≈ 2α and
|a1 p1 − a2 p2| < 2t for some
unknown integers a1, a2 ≤ 2β ,
the rigorous bound is
t ≥ 2α + 2β + 1 using the
continued fraction algorithm.
For a1 = a2 = 1, β = 0 and
the the rigorous bound is
t ≥ 2α + 1.

For q1 ≈ · · · ≈ qk ≈ 2α and
|ai pi − a j p j | < 2t for some unknown
integers a1, . . . , ak , the heuristic bound is
t >
k

k−1α + k2
k−1β + k

2(k−1)

(
1 + log2(πe)

)

using k-dimensional lattices of Zk . For
a1 = · · · = ak = 1, β = 0 and the the
heuristic bound is
t > k

k−1α + k
2(k−1)

(
1 + log2(πe)

)
.

We apply our results to the implicit factorization of k ≥ 2 RSA for Paranoids [7]
Ni = piqi , i = 1, . . . , k, where pi ≈ 24500 and qi ≈ 2500. For example, we show
that we can easily factor two RSA for Paranoids moduli N1 = p1q1, N2 = p2q2 if
there exist two integers a1 and a2 such that a1 p1 and a2 p2 share t MSBs or t LSBs
with t ≥ 1001 + 2β where β is such that ai ≤ 2β for i = 1, 2.

The rest of this paper is organized as follows. In Sect. 2, we introduce some useful
background on continued fractions and lattice basis reduction. In Sect. 3, we present
our first method to address the problem of implicit factoring of two RSA moduli
N1 = p1q1 and N2 = p2q2 when a1 p1 and a2 p2 share t MSBs. In Sect. 4, we present
a generalization to k ≥ 3 RSA moduli Ni = piqi , i = 1, . . . , k, in the situation
that the ai pi ’s share t MSBs. In Sect. 5, we present an attack on two RSA moduli
N1 = p1q1 and N2 = p2q2 when a1 p1 and a2 p2 share t LSBs and we generalize this
attack to k ≥ 3 RSA moduli in Sect. 6. In Sect. 7, we present our experiments and we
conclude in Sect. 8.

2 Preliminaries

In this section, we review some knowledge background on continued fractions and
lattice basis reduction.
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Table 3 Comparison of the bounds on t for k RSA moduli in the LSB case

Method for LSBs Number of RSA moduli k = 2 Number of RSA moduli k ≥ 3

May, Ritzenhofen [5] For q1 ≈ q2 ≈ 2α and p1 ≡ p2
(mod 2t ), the rigorous bound is
t ≥ 2α + 3 using
2-dimensional lattices of Z2

For q1 ≈ · · · ≈ qk ≈ 2α and pi ≡ p j
(mod 2t ), the heuristic bound is
t ≥ k

k−1α using k-dimensional lattices

of Zk

Sarkar, Maitra [8] For q1 ≈ q2 ≈ 2α and p1 ≡ p2
(mod 2t ), the bound is
heuristically better than
t ≥ 2α + 3 and the dimension
of the lattice is at least 9
(m = t = 1)

Can not be applied

Faugère et al. [1] Not studied Not studied

Kurosawa, Ueda [3] For q1 ≈ q2 ≈ 2α and p1 ≡ p2
(mod 2t ), the rigorous bound is
t ≥ 3α + 1 using
2-dimensional lattices of Z2

Can not be applied

Our results For q1 ≈ q2 ≈ 2α and
|a1 p1 − a2 p2| < 2t for some
unknown integers a1, a2 ≤ 2β ,
the rigorous bound is
t ≥ 2α + 2β + 1 using the
continued fraction algorithm.
For a1 = a2 = 1, β = 0 and
the the rigorous bound is
t ≥ 2α + 1

For q1 ≈ · · · ≈ qk ≈ 2α and
ai pi ≡ a j p j (mod 2t ) for some
unknown integers a1, . . . , ak , the
heuristic bound is t >
k

k−1α+ k2
k−1β+ k

2(k−1)

(
1 + log2(πe)

)

using k-dimensional lattices of Zk . For
a1 = · · · = ak = 1, β = 0 and the the
heuristic bound is
t > k

k−1α + k
2(k−1)

(
1 + log2(πe)

)

2.1 Continued fractions

First we give the definition of continued fractions and state a related theorem. The
details can be referenced in [2]. For any positive real number ξ , define ξ0 = ξ and for
i = 0, 1, . . . , n, ai = �ξi�, ξi+1 = 1/(ξi − ai ) unless ξn is an integer. Then ξ can be
expanded as a continued fraction in the following form

x = a0 + 1

a1 + 1

. . . + 1

an + 1

. . .

,

which, for simplicity, can be rewritten as ξ = [a0, a1, . . . , an, . . .]. If ξ is a rational
number, then the process of calculating the continued fraction expansion would be
finished in some finite index n and then ξ = [a0, a1, . . . , an]. The convergents a

b of
ξ are the fractions defined by a

b = [a0, . . . , ai ] for i ≥ 0. We note that, if ξ = a
b is
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a rational number, then the continued fraction expansion of ξ is finite with the total
number of convergents being polynomial in log(b).

Another important result on continued fractions that will be used throughout this
paper is the following (Theorem 184 of [2]).

Theorem 1 (Legendre) Let ξ be a positive number. Suppose gcd(a, b) = 1 and

∣∣∣ξ − a

b

∣∣∣ <
1

2b2
.

Then a
b is one of the convergents of the continued fraction expansion of ξ .

2.2 Lattice reduction

Let us present some basics on lattice reduction techniques. Let b1 . . . , bd be d linearly
independent vectors of Rn with d ≤ n. The set of all integer linear combinations of
the bi forms a lattice L. Namely,

L =
{

d∑

i=1

xibi | xi ∈ Z

}

.

The integer n is the rank of the latticeL and d is its dimension. The set (b1, . . . , bd)
is called a basis of L. The determinant of L is defined as det(L) = √

Bt B where
B is the basis matrix, i.e., the matrix of the bi ’s in the canonical basis of Rn . The
determinant is invariant under unimodular basis transformations of B and reduces to
det(L) = | det(B)| when d = n. Let us denote by ‖v‖ the Euclidean norm of a vector
v ∈ L. A central problem in lattice reduction is to find short non-zero vectors in L.
Vectors with short norm can be computed by the LLL algorithm of Lenstra, Lenstra,
and Lovász [4].

Theorem 2 (LLL) Let L be a lattice spanned by a basis (u1, . . . , ud). Then the LLL
algorithm produces a new basis (b1, . . . , bd) of L satisfying

‖b1‖ ≤ 2
d−1
4 det(L)

1
d .

On the other hand, for comparison, the Gaussian Heuristic says that the length of
the shortest non-zero vector of a lattice L is usually approximately σ(L) where

σ(L) ≈
√

d

2πe
det(L)

1
d .

3 Factoring two RSA Moduli in the MSB Case

In this section, we study the problem of factoring two RSA moduli N1 = p1q1 and
N2 = p2q2 where a1 p1 and a2 p2 coincide on the t most significant bits (MSBs), that
is when |a2 p2 − a1 p1| is sufficiently small.
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3.1 The general attack for two RSA Moduli in the MSB Case

We begin by the following result which applies to two RSA moduli not necessarily of
the same bit size.

Theorem 3 Let N1 = p1q1, N2 = p2q2 be two RSAmoduli. If there exist two integers
a1, a2 such that a1 < p2, a2 < p1 and |a1 p1 − a2 p2| <

p1
2a2q1q2

, then one can factor
N1 and N2 in polynomial time.

Proof For N1 = p1q1 and N2 = p2q2, let x = a1 p1 − a2 p2. Multiplying x by
q2, we get a1 p1q2 − a2N2 = xq2. Suppose that |x | <

p1
2a2q1q2

. Then, dividing by
a2N1 = a2 p1q1, we get

∣∣
∣∣
N2

N1
− a1q2

a2q1

∣∣
∣∣ = |x |q2

a2 p1q1
<

p1
2a2q1q2

× q2
a2 p1q1

= 1

2(a2q1)2
.

Hence, fromTheorem 1, it follows that a1q2a2q1
, in lowest term is one of the convergents

in the continued fraction expansion of N2
N1
. If we assume a1 < p2, a2 < p1, then

using a1q2
a2q1

, we get q1 = gcd(N1, a2q1) and therefore p1 = N1
q1
. Similarly, we get

q1 = gcd(N2, a1q2) and p2 = N2
q2
. ��

Remark 1 The result of Theorem 3 is valid even when the RSA moduli are not of
the same size. Comparatively, the attacks presented by Sarkar and Maitra in [8] and
Faugère et al. in [1] are valid only if N1 ≈ N2 and q1 ≈ q2.

Example 1 Consider the following RSA moduli

N1 = 63431782986412625310912155582547071972279848634479,

N2 = 9946006657067710178027582903059286609914354223.

The first partial quotients of N2
N1

are

[0, 6377, 1, 1, 1, 1, 2, 2, 3, 1, 1, 3, 9, 1, 1, 1, 1, 7, 1, 19, 1, 1, 11,
1, 1, 23, 1, 1, 3, 2, 3, 2, 3, 4, 2, 1, 1, 1, 8, 1, 322, 3, 4, 1, 1, 2, . . .]

Each convergent a
b of N2

N1
is a candidate for a1q2

a2q1
and the good one will reveal q1

and q2 if the conditions of Theorem 3 are fulfilled. Indeed, the 40th convergent is
a
b = 1351300027964332

8618068847003717463 and gives

q1 = gcd(N1, b) = 2125300178867,

p1 = N1

q1
= 29846034747067203786403150576377329237,

q2 = gcd(N2, a) = 9531501481,

p2 = N2

q2
= 1043487920228935667940393294165327383.
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We notice that p1 and p2 do not share any amount of LSBst nor MSBs nor bits in the
middle. This shows that the attacks presented in [8] and [1] will not give a result in
this situation.

3.2 Application to unbalanced RSA and RSA for Paranoids

As an application of Theorem 3 to factor two unbalanced RSA moduli of the same
bit-size, we get the following result.

Corollary 1 Let N1 = p1q1, N2 = p2q2 be two unbalanced RSA moduli of the same
bit-size n. Suppose that qi ≈ 2α, pi ≈ 2n−α for i = 1, 2. Let a1, a2 be two integers
such that ai ≤ 2β, i = 1, 2. If a1 p1 and a2 p2 share t most significant bits with
t ≥ 2α + 2β + 1, then one can factor N1 and N2 in polynomial time.

Proof Let N1 = p1q1, N2 = p2q2 be two RSAmoduli with N1 ≈ N2 ≈ 2n and q1 ≈
q2 ≈ 2α . Suppose that a multiple a1 p1 and a multiple a2 p2 share the t most significant
bits, that is a1 p1 − a2 p2 = x with |x | ≤ 2n−α+β−t . Assume that t ≥ 2α + 2β + 1.
Then

2a2q1q2|x | < 21+β+2α+n−α+β−t ≤ 2n−α ≈ p1,

which can be transformed into the inequality |x | <
p1

2a2q1q2
. Hence, as in Theorem 3,

it follows that a1q2
a2q1

is a convergent of the continued fraction of N2
N1

which leads to the
factorization of N1 and N2. ��
Remark 2 If we consider β = 0 in Corollary 1, that is, if a1 = a2 = 1, a sufficient
condition to factor the two RSA moduli is t ≥ 2α + 1 which slightly improves the
bound t ≥ 2α + 3 found by Faugère et al. in [1]. This shows that the bound found by
Faugère et al. with lattice reduction techniques can be achieved using the continued
fraction algorithm instead.

Consider two RSA for Paranoids moduli Ni = piqi with Ni ≈ 25000, qi ≈ 2500

and pi ≈ 24500 for i = 1, 2. Then α = 500 and by Corollary 1, it is possible to
factor N1 and N2 if a multiple a1 p1 and a multiple a2 p2 share the t MSBs whenever
t ≥ 2α + 2β + 1, that is whenever t ≥ 1001 + 2β.

4 Factoring k RSA Moduli in the MSB Case

The attack mounted for two RSA moduli can be generalized to an arbitrary number
k ≥ 3 of moduli Ni = piqi , i = 1 . . . , k where the qi ’s are α-bit primes and the ai pi ’s
share t MSBs. Instead of using the continued fraction algorithm, we use a lattice based
method to find simultaneous diophantine approximations.

Theorem 4 Let Ni = piqi , i = 1 . . . , k, be k ≥ 3 n-bit RSAmoduli where the qi ’s are
α-bit primes. Suppose that there exist k integers a1, . . . , ak with ai ≤ 2β, i = 1, . . . , k,
such that the ai pi ’s share all t most significant bits. If
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t >
k

k − 1
α + k2

k − 1
β + k

2(k − 1)

(
1 + log2(πe)

)
,

then, under the Gaussian Heuristic assumption, one can factor the k RSA moduli
N1, · · · , Nk in polynomial time.

Proof For 2 ≤ i ≤ k, we set xi = ai pi − a1 p1. Then, multiplying by q1qi , we get
aiq1Ni − a1qi N1 = q1qi xi . Define a = ∏k

j=1 a j . Multiplying by a
ai
, we get

aq1Ni − aa1qi
ai

N1 = aq1qi xi
ai

.

Let C be a number to be fixed later. Consider the vector

v =
(
Caq1,

aq1q2x2
a2

, . . . ,
aq1qkxk

ak

)
∈ Z

k . (2)

Then v =
(
aq1,

aa1q2
a2

. . . ,
aa1qk
ak

)
× M, where M is the k × k-matrix

M =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

C N2 N3 . . . Nk−1 Nk

0 −N1 0 . . . 0 0

0 0 −N1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −N1 0

0 0 0 . . . 0 −N1

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

Let L be the lattice defined by the rows of M . The dimension of L is k and the
determinant is det(L) = CNk−1

1 . The Gaussian Heuristics forL asserts that the length
of its shortest non-zero vector is usually σ(L) where

σ(L) ≈
√

k

2πe
det(L)

1
k =

√
k

2πe
C

1
k N

k−1
k

1 . (3)

If we chooseC such that σ(L) > ‖v‖, then v can be found among the shortest non-zero
vectors of the lattice L. Using (2), we get

‖v‖2 = C2a2q21 +
k∑

i=2

a2q21q
2
i x

2
i

a2i
. (4)

Suppose that for i = 1, . . . , k, we have

Ni ≈ 2n, qi ≈ 2α, pi ≈ 2n−α, ai ≤ 2β.
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Moreover, suppose that the ai pi ’s share all t MSBs. Then, for i ≥ 2, we have

|xi | = |ai pi − a1 p1| ≤ 2n−α+β−t .

Hence (4) leads to

‖v‖2 < C2 × 22kβ+2α + (k − 1)22kβ+4α+2(n+β−α−t)−2β

= C2 × 22kβ+2α + (k − 1) × 22kβ+2α+2n−2t .

Define C such that C2 × 22kβ+2α ≥ 22kβ+2α+2n−2t , that is C ≥ 2n−t . Then
‖v‖2 < kC2 × 22kβ+2α. On the other hand, using Ni ≈ 2n in (3), we get

σ(L)2 ≈ k

2πe
C

2
k × 2

2n(k−1)
k .

Suppose σ(L) > ‖v‖. Then σ(L)2 > ‖v‖2, that is
k

2πe
C

2
k 2

2n(k−1)
k > kC2 × 22kβ+2α.

Hence

C
2(k−1)

k <
1

πe
2

2n(k−1)
k −2kβ−2α−1.

Plugging C ≥ 2n−t and extracting t , we get

t >
k

k − 1
α + k2

k − 1
β + k

2(k − 1)

(
1 + log2(πe)

)
.

Using (2), we get q1 = gcd(Caq1, N1) and for i = 2, . . . , k, qi = gcd( aa1qiai
, Ni ).

This terminates the proof. ��
We notice that with β = 0, that is ai = 1 for i = 1, . . . , k, we get

t >
k

k − 1
α + k

2(k − 1)

(
1 + log2(πe)

)
,

which slightly improves the bound obtained by Faugère et al. in [1]. This shows that
our result extends the result of Faugère et al. where they considered only the case
when the pi ’s share t MSBs.

5 Factoring two RSA Moduli in the LSB Case

The study of implicit factorization when p1, p2 share some LSBs has been considered
in [1,5,8] and [3]. In this section, we extend the former attacks to the case where an
unknownmultiple a1 p1 of p1 and an unknownmultiple a2 p2 of p2 share their t LSBs.
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5.1 The general attack

Theorem 5 Let N1 = p1q1, N2 = p2q2 be two RSA moduli. Assume that there exist
two integers a1, a2 with a1 < p2, a2 < p1 such that a1 p1 and a2 p2 share t many
LSBs. If a1a2q1q2 < 2t−1, then one can factor N1 and N2 in polynomial time.

Proof Let N1 = p1q1 and N2 = p2q2. Assume that a1 p1 and a2 p2 share t many
LSBs. Then a1 p1 − a2 p2 = 2t x for some integer x and we have

q1q2(a1 p1 − a2 p2) = N1a1q2 − N2a2q1 = 2t xq1q2.

Then N1a1q2−N2a2q1 ≡ 0 (mod 2t ). Since gcd(N1, 2) = 1, then N−1
1 (mod 2t )

exists and a1q2 − a2q1N2N
−1
1 ≡ 0 (mod 2t ). Define T ≡ N2N

−1
1 (mod 2t ). Then

a1q2 − a2q1T ≡ 0 (mod 2t ) and there exists an integer y such that

a1q2 = a2q1T − 2t y. (5)

Suppose that a1a2q1q2 < 2t−1. Then dividing by 2t a2q1, we get

∣∣∣∣
T

2t
− y

a2q1

∣∣∣∣ =
∣
∣a2q1T − 2t y

∣
∣

2t a2q1
= a1q2

2t a2q1
<

a1q2
2a1a2q1q2a2q1

= 1

2(a2q1)2
.

Therefore from Theorem 1, it follows that y
a2q1

is one of the convergents in the

continued fraction expansion of T
2t . Since a2 < p1, we get q1 = gcd(N1, a2q1) and

p1 = N1
q1
. Using (5), we get a1q2 = a2q1T − 2t y. Similarly, since a1 < p2, we get

q2 = gcd(N2, a1q2) and p2 = N2
q2
. This terminates the proof. ��

5.2 Application to unbalanced RSA and RSA for Paranoids

Here we apply Theorem 5 in the situation that the two RSAmoduli N1 = p1q1, N2 =
p2q2 are of the same shape, that is N1 and N2 are of the same bit-size and the qi ’s are
α-bit primes.

Corollary 2 Let N1 = p1q1, N2 = p2q2 be two unbalanced n-bit size RSA moduli
with q1 ≈ q2 ≈ 2α . Suppose that there exist two positive integers a1 ≤ 2β, a2 ≤ 2β

such that a1 p1 and a2 p2 share the t LSBs. If t ≥ 2α + 2β + 1, then one can factor
N1 and N2 in polynomial time.

Proof Let N1 = p1q1, N2 = p2q2 be two RSA moduli with N1 ≈ N2 ≈ 2n and,
q1 ≈ q2 ≈ 2α . Suppose that a multiple a1 p1 and a multiple a2 p2 share the t least
significant bits where ai ≤ 2β for i = 1, 2. Define T ≡ N2N

−1
1 (mod 2t ). As in

the proof of Theorem 5, we have a1 p1 − a2 p2 = 2t x and a1q2 = a2q1T − 2t y for
some integers x and y. Suppose that t ≥ 2α + 2β + 1. Then a1a2q1q2 < 22β+2α ≤
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2t−1. Therefore, using the same arguments than Theorem 5, we conclude that y
a2q1

is

one of the convergents in the continued fraction expansion of T
2t which leads to the

factorization of N1 and N2. ��
Remark 3 Here again, if β = 0, then the condition of Corollary 2 becomes t ≥ 2α+1
which improves the bounds found in the former approaches of [1,5,8] and retrieves
the bound of [3].

As an application of Corollary 2, consider two 1024-bit RSA for Paranoids moduli
N1 = p1q1, N2 = p2q2 where q1, q2 are 500-bit primes. Hence α = 500 and using
Corollary 2, one can factor N1 and N2 if there exist two integers a1 ≤ 2β and a2 ≤ 2β

such that a1 p1 and a2 p2 share t LSBs with t > 2001 + 2β.

6 Factoring k RSA Moduli in the LSB Case

In this section, we assume that we are given k ≥ 3 different RSA moduli Ni =
piqi , i = 1, . . . , k where some unknown multiples ai pi ’s coincide on the t least
significant bits. For suitably large t , we show that there is an efficient algorithm that
recovers the factorization of the k RSAmoduli. To this end, we use the lattice reduction
techniques to solve a simultaneous diophantine approximations problem.

Theorem 6 Let Ni = piqi , i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli where the
qi ’s are α-bit primes. Suppose that there exist k positive integers a1, . . . , ak with
ai ≤ 2β, i = 1, . . . , k, such that the ai pi ’s share all t least significant bits. If

t >
k

k − 1
α + k2

k − 1
β + k

2(k − 1)

(
1 + log2(πe)

)
,

then, under the Gaussian Heuristic assumption, one can factor the k RSA moduli
N1, · · · Nk in polynomial time.

Proof For 1 ≤ i ≤ k, suppose that the ai pi ’s share t least significant bits. Then, for
1 ≤ i ≤ k, ai pi − a1 p1 = 2t xi . Multiplying by q1qi , we get aiq1Ni − a1qi N1 =
2t q1qi xi . Define a = ∏k

j=1 a j . Multiplying by a
ai
, we get

aq1Ni − aa1qi
ai

N1 = 2t aq1qi xi
ai

.

Transforming modulo 2t , we get aq1Ni N
−t
1 − aa1qi

ai
≡ 0 (mod 2t ). Define Ti ≡

Ni N
−1
1 (mod 2t ). Then aq1Ti − aa1qi

ai
≡ 0 (mod 2t ) and there exists an integer yi

such that aq1Ti − 2t yi = aa1qi
ai

. Consider the vector

v =
(
aq1,

aa1q2
a2

, . . . ,
aa1qk
ak

)
∈ Z

k . (6)
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Then v = (aq1, y2 . . . , yk) × M, where M is the k × k-matrix

M =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1 T2 T3 . . . Tk−1 Tk
0 −2t 0 . . . 0 0

0 0 −2t . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −2t 0

0 0 0 . . . 0 −2t

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

.

Let L be the lattice defined by the rows of the matrix M . The dimension of L is k
and the determinant is det(L) = 2(k−1)t . The Gaussian Heuristics for L asserts that
the length of its shortest non-zero vector is σ(L) where

σ(L) ≈
√

k

2πe
det(L)

1
k =

√
k

2πe
2

(k−1)t
k . (7)

Observe that the norm of v satisfies

‖v‖2 = a2q21 +
k∑

i=2

(
aa1qk
ak

)2

.

If the ai pi ’s share all t least significant bits, then, for i = 1, . . . , k, we have

qi ≈ 2α, ai ≤ 2β, |xi | = |ai pi − a1 p1|
2t

< 2n−α+β−t .

Hence

‖v‖2 < 22kβ+2α + (k − 1)22kβ+2α = k22kβ+2α. (8)

Using (8) and (7) and transforming σ(L)2 > ‖v‖2 into k
2πe2

2(k−1)t
k > k22kβ+2α, we

get

t >
k

k − 1
α + k2

k − 1
β + k

2(k − 1)

(
1 + log2(πe)

)
.

Using (6), we get q1 = gcd(aq1, N1) and for i = 2, . . . , k, qi = gcd( aa1qiai
, Ni ). This

terminates the proof. ��

Once again, if β = 0, then ai = 1 and the bound of Theorem 6 transforms to
t > k

k−1α + k
2(k−1)

(
1 + log2(πe)

)
, which improves the bound of [1].
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7 Experiments

In this section, we describe the experiments that we conducted for k = 4, 10, 30
and 50 RSA moduli, in connection with Theorem 4 and Theorem 6. We verified our
assumptions by running experiments on a Core2 Duo 2GHz notebook. The lattice
reduction basis technique was based on the LLL algorithm.

Assume that a1 p1 and the ai pi ’s share t MSBs. Then since ai pi ≤ 2n−α+β , we
see that |ai pi − a1 p1| ≤ 2n−α+β−t . Therefore, t ≤ n − α + β. Similarly, assume that
a1 p1 and the ai pi ’s share t LSBs. Then |ai pi − a1 p1| = 2t xi with t ≤ n − α + β. In
both cases, combining with the bound of t in Theorem 4 and Theorem 5, we get

n − α + β ≥ t >
k

k − 1
α + k2

k − 1
β + k

2(k − 1)

(
1 + log2(πe)

)
,

which is satisfied if

β <
n(k − 1)

k2 − k + 1
− 2k − 1

k2 − k + 1
α − k

2(k2 − k + 1)

(
1 + log2(πe)

)
. (9)

Consequently, we only consider the situationwhere the bit-sizeβ of the ai ’s satisfies
condition (9).

We generatedmany random 1024-bit RSAmoduli for k = 4, 10, 30, 50 and various
values of α and β according to the bound (9). All our experiments were successful

Table 4 Experiments for k RSA moduli in the MSB and the LSB cases

Number
k of
moduli

Bit-size
α of
the qi ’s

Max bit-size
β of the
ai ’s (9)

Used bit-
size β of
the ai ’s

Minimal
theoretical
bound for t

Experimental
bound for
t in MSB case

Experimental
bound for
t in LSB case

Number of
experiments

4 150 154 100 737 602 611 1000

4 250 100 80 763 655 662 1000

4 350 46 35 657 609 616 1,000

4 400 20 15 617 594 601 1,000

10 150 69 50 725 649 674 1,000

10 250 48 40 725 667 684 1,000

10 350 27 20 614 591 603 1,000

10 400 17 12 581 563 570 1,000

30 150 23 15 623 585 592 500

30 250 17 12 634 596 603 500

30 350 10 8 613 544 572 500

30 400 6 4 541 533 536 500

50 150 14 10 666 648 650 100

50 250 10 7 615 597 605 100

50 350 6 4 564 546 551 100

50 400 4 3 564 556 559 100

123



www.manaraa.com

Factorization of RSA moduli 363

and the assumptions on the Gaussian Heuristics were verified. In Table 4, we notice
the experimentally lowest values of t that have 100% success rate.

8 Conclusion

In this work we have designed a technique to factor k ≥ 2 RSAmoduli Ni = piqi , i =
1, . . . , k when some unknown multiples ai pi share t many Most Significant Bits
(MSBs) or t many Least Significant Bits (LSBs). The new technique generalizes
many previous results where the prime factors pi share t many MSBs or t many
LSBs. This provides practitioners tighter conditions for the primes that are generated
for utilization with the RSA algorithm. On the other hand, our results also serve their
purpose to provide a peace of mind for practitioners knowing that the generated RSA
moduli does not fall into any of the categories mentioned in this work.
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